Electrical Engineering (EE) B.S.

A Bachelor of Science degree program in Electrical Engineering prepares individuals to apply scientific and mathematical principles to the planning, design, and evaluation of electrical and electronic systems and their components. This degree includes instruction in circuits, electronics, digital systems, electrical networks, electromagnetism, embedded control, programming, signal analysis, and electrical systems.

In accordance with the standards set forth by the Engineering Accreditation Commission (EAC) of ABET, graduates from an Electrical Engineering program will have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Input from electrical engineering faculty, industry, and research were utilized in the development of the Electrical Engineering curriculum. As a means of validation, the A\&M-Commerce degree was benchmarked against curricula from the ABET Electrical Engineering accredited schools, as well as the ABET Electrical Engineering curriculum requirements, and the Fundamentals of Engineering (FE) examination.
Core Curriculum Courses

See the Core Curriculum Requirements (http://coursecatalog.tamuc.edu/undergrad/core-curriculum-requirements/)
Required courses in the major
ENGR $110 \quad$ Introduction to Engineering and Technology 3
ENGR 113 Product Design and Development 3
ENGR 2304 Computing for Engineers 3
ENGR 2308 Engineering Economic Analysis 3
ENGR 213 Engineering Probability and Statistics 3
EE 210 Digital Circuits 3
EE 220 Circuit Theory I 3
EE 309 Circuit Theory II 3
EE 310 Digital Systems /Embedded Control 3
EE 320 Electronics I 3
EE 321 Electronics II 3
EE 330 Continuous Signals and Systems 3
EE 340 Electromagnetics 3
EE 433 Digital Signal Processing 3
EE 435 Control Systems 3
EE 440 Electric Machinery 3
EE 470 Capstone Design / Internship I 3
EE 471 Capstone Design/Internship II 3
Required support courses

General and Quantitative Chemistry I (3 sch)
General and Quantitative Chemistry Laboratory I (1 sch)
Calculus I (4 sch) *
Calculus II
Calculus III4
Differential Equations 3

MATH 2318	Linear Algebra	3
$\text { ECO } 2301$	GLB/US-Prin Macro Economics (3 sch) *	
or ECO 2302	Principles of Micro Economics	
PHYS 2425	University Physics I (4 sch) ${ }^{\text {* }}$	
PHYS 2426	University Physics II (4 sch)	4
COSC 1436	Introduction to Computer Science and Programming	4
Technical Electives EE or PHYS **		9
EE 430	Discrete Signals \& Systems (Elective)	
EE 450	Advanced Digital Signal Processing	
EE 451	Digital Systems Design	
EE 452	Antenna Theory and Design	
EE 453	RF Networks	
EE 454	Power Electronics	
EE 455	Digital Design with HDL	
EE 489	Independent Study	
EE 497	Special Topics	
PHYS 319	Computational Physics with Python	
PHYS 321	Modern Physics	
PHYS 333	Wave Motion, Acoustics, and Optics	
PHYS 411	Classical Mechanics	
PHYS 414	Thermodynamics and Kinetic Theory	
PHYS 420	Quantum Mechanics	
PHYS 430	Optics	
PHYS 437	Nuclear Physics	
PHYS 492	Instrumentation and Control	

Total Hours
*These courses should be used to satisfy the Core Curriculum Requirements in Social and Behavioral Science, Natural Sciences, and Mathematics, respectively; otherwise, the credit hours required to earn the B.S. in EE will exceed 127.
** A minimum of three (3) courses, nine (9) credits must be selected and completed from the elective list.
A grade of "C" or higher must be earned in all courses in this Major.

